

Composition of biofilm in filter material of natural pools

A pilot study

M. Riederer[#], P. Pjevac^{*}, B. Hausmann^{*}

[#]FH JOANNEUM Graz, *Division of Microbial Ecology, University of Vienna, Austria

Biofilm is the solution

- Challenge: produce water that is *"*biologically stable"
- Biofilm = solution
 - biodegrading organic matter
 and ammonium in controlled
 conditions

Bioadsorption, Bioaccumulation and Degradation im Biofilter

Sehar et al., 2015, DOI: 10.5772/63499

If the biofilm is the solution

- What (micro)organisms is the biofilm composed of?
- Pro- and Eukaryotes... (mostly bacteria, plants, animals, protozoa,...)

Biofilm composition:

- Standard microbial analysis only cover bacteria, and only those that can be cultured
- Furthermore: A **dormant status** was described for pathogenic bacteria, such as *Campylobacter* spp., *E. coli*, and *Legionella pneumophila* which makes their isolation and identification problematic
- Therefore, cultivation-independent **molecular-biological methods targeting nucleic acids** are required in addition to biochemicometabolic analyses

(Moritz et al, 2010).

Aims: Blackbox Biofilm

 Decipher the blackbox biofilm: To identify the composition of the biofilm using next-generation sequencing (NGS)

Subaims:

- To figure out the **collection method** needed for analysis of biofilm samples. Therefore local stone collection is compared to complete biofilm removal of the filter by air pressure (*"blowern"*).
- Elucidate the differences between biofilm and water microbiota composition

METHODS: sample collection and preparation

Amplikon sequencing, metagenomic shot-gun sequencing

Biofilm: 5 "stone"samples 3 samples "blowern" (in 2 pools "blowern" was not possible)

Water: 5 "water"samples

Results

Results Amplicon Sequencing:

→ Focus on bacteria

Alpha-Diversity: comparing sample types:

- Bacterial Richness (Chao1 Index) = similar;
- How many bacterial taxa

Pairwise Wilcoxon Test:

Chao1= n.s.

→ Abundance

Difference in relative abundance

PermanovaG with 5 metrics

Omnibus p-value = n.s.

Ellipses represent a 75% CI around the cluster centroid

Taxonomic ranks

https://link.springer.com/chapter/10.1007/978-3-642-25151-1_1

Technolic desideation of technic from phasm to strain level Maki et al, 2020, DOI: 10.1177/1099800420941606

Taxonomic composition – Phyla: per sample overview:

Stones, Pools 1-5; TOP 15 taxa shown (rest in grey);

Others. Root > Bacteria > Myxococcuta Root > Bacteria > Dependentiae Root > Bacteria > Bdellovibrionota Root > Bacteria > Nitrospirota Root > Bacteria > Firmicutes Root > Bacteria > Chloroflexi Root > Bacteria > Acidobacteriota Root > Bacteria > Actinobacteriota Root > Archaea > Crenarchaeota Root > Unclassified > unclassified Root > Bacteria > Verrucomicrobiota Root > Bacteria > Planctomycetota Root > Bacteria > Cyanobacteria Root > Bacteria > Bacteroidota Root > Bacteria > Proteobacteria

Pools 1-5

Taxonomic composition – Class: per sample overview:

Stones, Pools 1-5; TOP 15 taxa shown (rest in grey)

Feature %>% fct_rev()

Others

Root = Bacteria > Dependentiae > Bateriae Root > Bacteria > Nitrospirata > Nitrospiria Root > Bacteria > Acidobacteriota > Acidobacteriae Root > Bacteria > Acidobacteriota > Bastocatellia Root > Bacteria > Chloroficsi > Anaerolineae Root > Bacteria > Protosbacteria > unclassified Root > Bacteria > Protosbacteria > unclassified Root > Bacteria > Actinobacteriata > Actinobacteria Root > Bacteria > Corrarchavota > Nitrosoephaeria Root > Bacteria > Planctomydetota > Planctomydetes Root > Unclassified + unclassified > unclassified Root > Bacteria > Planctomydetota > Planctomydetes Root > Bacteria > Planctomydetota > Vernucomicrobiae Root > Bacteria > Protesbacteria > Gyanobacteria Root > Bacteria > Protesbacteria > Aphaprotesbacteria Root > Bacteria > Protesbacteria > Alphaprotesbacteria Root > Bacteria > Protesbacteria > Alphaprotesbacteria Root > Bacteria > Protesbacteria > Samesaprotesbacteria

 \rightarrow Summarized to:

Pools 1-5

Mean composition (13 most prominent phyla in stone biofilms):

Pathogenic bacteria ?

• No hygienically relevant pathogenic bacteria detected in sequencing results

 \rightarrow E. coli, Enterococcus, Pseudomonas aer.

 \rightarrow CAVE: Sensitivity !

Discussion:

First pilot study investigating biofilm in natural pools using nucleic-acid based tools (NGS) Reveals composition of **major players** in the biofilms Decreased diversity in **water** samples (trend)

Pathogenic bacteria not detected

Limitations:

Pilotstudy with 5 Pools, different filtermaterials, limited sensitivity (sequencing depth), 1 timepoint <u>To do:</u> confirmation in a larger sample set; controlled conditions

Thank you !

VERBAND ÖSTERREICHISCHER SCHWIMMTEICH- & NATURPOOLBAU

Christoph Fink, Garten Hödl

Vergleich mit Biofilmen in der Wasseraufbereitung:

Tabelle 2-3: Klassifikation der Mikroorganismen in biologischen Abwasserreinigungssystemen (nach Rheinheimer et al. 1989)

Organismen -gruppe	C-Quelle	Elektronen -donator	Elektronen- akzeptor	Produkte des Abbaustoff- wechsels	Tätigkeitsmerkmale	
Primär- abbauer	org. C (gelöst)	org. C	O ₃	CO ₂ , NH ₄	aerobe Bakterian	chemo-organo- heterotropohe Bakterien
			NO ₃	NO ₅	Nitrateoduzioner	
			NO ₁ , NO ₂	N ₂	Denitrifikanten	
			org. C	org. C	anaerobe Bakterien	
Sekundär- abbeuer	organ. C (partikulār)	organ. C	O ₂	CO _D NH4	Ciliaten, niedere Metazoen	
Nitrifikanten	CO2	NH4"	O ₂	NO ₂	Ammoniakoxidierer	chemo-atho- autotropphe Bakterien
	CO2	NO ₂	O ₂	NO ₃ '	Nitritoxidierer	